Spatial graph
convolutions

UVA DEEP LEARNING COURSE
EFSTRATIOS GAVVES -1

Input

Graph
convolutions
2
=)
é&)

o\
-

Regularization, Graph

e.g., dropout

Activation
function

/

convolutions

Output: Drugs C, D
lead to a side effect r,




Graph convolutions on spatial domain

o Convolutions as (“local”) matrix multiplications

Adjacency matrix
i I \ o

Neighbors of “6”
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Graph Convolutional Networks (GCN)

o Each node has a feature vector (row-wise)
> Left-multiplying with adjacency, we recover the features in neighborhood

> Right-multiplying with a weight matrix, we “convolve” on neighborhood
y = ReLU(AXW)

T. Kipf, M. Welling, 2016
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Graph Convolutional Networks (GCN)

o Each node has a feature vector (row-wise)
> Left-multiplying with adjacency, we recover the features in neighborhood

> Right-multiplying with a weight matrix, we “convolve” on neighborhood

> We can also stack multiple convolution layers
y = softmax(4 ReLU(AXW )W)

T. Kipf, M. Welling, 2016
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Graph Attention Networks (GAT)

o Similar but including attention: y; = h(X () @ijXj)

o Attention with using self-attention and graph convolutions
_ exp(e;;)
Yren i) exp(LeakyRELU([x; W, x;W| - u))

aij

o e;; are the self-attention weights
e;; = LeakyRELU([x; W, x;W|-u) )

o uis a weight vector

F. Monti et al., 2017; P. Velickovic et al. 2018
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Self-attention for graph convolutions

concat/avg

Figure 1: Left: The attention mechanism a(Wf_l.,:, Wﬁj) employed by our model, parametrized

by a weight vector a € R?¥ ’ applying a LeakyReLU activation. Right: An illustration of multi-
head attention (with ' = 3 heads) by node 1 on its neighborhood. Different arrow styles and
colors denote independent attention computations. The aggregated features from each head are

concatenated or averaged to obtain h.

P. Velickovic et al. 2018
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Message Passing Neural Network (MPNN)

o General aggregation function
y;i = 9 jen M(xi xj, €5, W))

Gilmer et al. 2017
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Coarsening graphs

o Group nodes together
o Learnable pooling
o Adjacency matrices get updated

o Average or max pool the node features
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Ditferential Graph Pooling
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Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

Figure 1: High-level illustration of our proposed method DIFFPOOL. At each hierarchical layer, we
run a GNN model to obtain embeddings of nodes. We then use these learned embeddings to cluster
nodes together and run another GNN layer on this coarsened graph. This whole process is repeated
for L layers and we use the final output representation to classify the graph.
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o What makes graphs special?
o Revisiting graphs
Summary o Revisiting convolutions

o Spectral graph convolutions

o Spatial graph convolutions

Extra reading material:

o All papers mentioned in the slides
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